Introducing an Online Application for Estimation Plots

https://pcjapan.shinyapps.io/estimation_plots/

Paul Collett – collett@shimonoseki-cu.ac.jp

Rationale

- In light of ongoing critiques of the use of statistical significance testing, present an alternative way to interpret outcomes of quantitative research.
- Estimate effect sizes and their uncertainty rather than a dichotomous "accept-reject" perspective
- Provide standard measures researchers should understand alongside alternatives informed by recent commentary in quantitative methodology.
- Provide graphical data analysis tools for both exploratory and explanatory purposes.
- Deliver a user-friendly application built using modern opensource statistical analysis resources.

t-tests

- Used to assess differences between two means.
- Multiple variants exist. Be aware of the one you are using.
- Delacre, Lakens & Leys (2017) argue that Welch's *t*-test should be used when dealing with data that is non-homogeneous and is non-normal.
- Field & Wilcox (2017) put forward a case for Yuen's *t*-test, a **robust** alternative. Delacre, et al. suggest this test fails under certain circumstances.
- Both tests are seen as better than Student's *t*-test due to its strict assumptions.
- Suggested approach: Run both Welch & Yuen's test and report outcomes concurrently.

Statistical Significance Testing What's the problem?

- Doesn't tell you what many think it tells you: A *p*-value from a statistical test tells you the probability of the observed data given that the null hypothesis is true.
- Null hypothesis is always false.
- Lack of power of tests.
- Issues with assumptions.
- Focussing on just *p*-value doesn't give details of effect size.

Robust Statistics

- Computer-intensive methods that adjust for issues in samples which violate assumptions of standard statistical tests.
- Alternative to non-parametric tests with more power and reliability.
- Common methods are trimmed means and bootstrapping.

Basic Statistics

	V1	V2
median	12.500	16.000
mean	12.958	15.583
SE.mean	0.703	1.177
CI.mean.0.95	1.547	2.591
var	5.930	16.629
std.dev	2.435	4.078
coef.var	0.188	0.262
skewness	0.163	0.269
skew.2SE	0.128	0.211
kurtosis	-1.485	-1.268
kurt.2SE	-0.603	-0.515
normtest.W	0.954	0.949
normtest.p	0.701	0.617
95% Confiden	ce inte	rval for
Group 1: 11.4	411, 14	.505
Group 2: 12.9	992, 18	.174

t-test

• This gives a robust t-test with either 10% or 20% trimmed mean, and x number of bootstapped samples. Select the levels of the trimmed mean and bootstrapping below.

• The second t-test is a Welch test.

Trimmed Mean

Select the trimmed mean %

02	
0.2	

Bootstrap Samples

Robust t-test and effect size

Yuen bootstrapped t-test for independent samples (Robust test w/ 5000 bootstrapped samples)

t = -1.516, df = NA, p-value = 0.125 95% confidence interval: -5.516 0.766 Mean difference for 20% trimmed means: -2.375 Effect size = -0.662, 95% confidence interval for effect size -1.838 0.136

•

Welch t-test and effect size

Welch Two Sample t-test

Effect size: 0.782

Exploratory Analysis

- Larson-Hall (2017) : data accountable graphics (graphics showing all the relevant details of the dataset)
- •data rich graphics (those that illustrate the data distribution and provide a large amount of information) to augment statistical results:
- •"...such graphics will firmly establish the credibility of the statistical arguments." (p. 244).

Exploratory and Explanatory Data Analysis

Exploratory and Explanatory Data Analysis

Confidence Intervals

- Cls show a range within which you can be confident at the x% level of probability that the interval contains the true mean of the population.
- Comparing CIs provide as much information and more as that from statistical significance tests.
- Can be calculated for both measures of location (e.g., means) and effect sizes.

Effect Sizes

- Effect size is a indication of the magnitude of the experimental effect. The larger the effect size the stronger the relationship between two variables.
- Cohen (1988) describes effect size as "the degree to which the null hypothesis is false" (p.9).
- Provide a standardised way to report results focussing on the actual likelihood that what you have been testing for had some kind of impact.
- Recommended they should be reported in quantitative research results.
- Lack of effect sizes limits generalisability of research, especially for meta-analysis.
- Like CIs, problematic if you consider the general limits of the logic of statistical significance tests.

Estimation Plots

- Utilizes Ho, et al's (2019) Dabest package in R.
- Follows Cumming's (2012) New Statistics principles.
- Plots complete data set, along with effect size and associated CI.

Statistics QQ Plots Vic	olin Plot	Estimation Plot
-------------------------	-----------	-----------------

Good evening! The current time is 19:01 PM on Monday May 10, 2021.

Dataset : df X Variable : Grouping1 Y Variable : Measured Unpaired Cohen's d of 2 (n = 12) minus 1 (n = 12) 0.782 [95CI -0.0669; 1.63] 5000 bootstrap resamples.

All confidence intervals are bias-corrected and accelerated.

Future Aims

- Increase range of tests.
- Upload data from text file (csv).
- More customisation of labels, metadata.
- Other suggestions?

- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). New York: Routledge
- Cumming, G. (2012). Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis. New York: Routledge.
- Delacre, M., Lakens, D., & Leys, C. (2017). Why psychologists should by default use Welch's t-test instead of Student's t-test. *International Review of Social Psychology, 30*(1), 92–101. http://doi.org/10.5334/irsp.82
- Field, A. P., & Wilcox, R. R. (2017). Robust statistical methods: A primer for clinical psychology and experimental psychopathology researchers. *Behaviour Research and Therapy* 98, 19–38. https://doi.org/10.1016/j.brat.2017.05.013
- Ho, J., Tumkaya, T., Aryal, S., Choi, H, & Claridge-Chang, A. (2019). Moving beyond p values: data analysis with estimation graphics. *Nature Methods* 16, 565–566. https://doi.org/10.1038/s41592-019-0470-3
- Larson–Hall, J. (2017). Moving beyond the bar plot and the line graph to create informative and attractive graphics. *The Modern Language Journal 101*, 244-270. https://doi.org/10.1111/modl.12386
- Mair, P., & Wilcox, R. (2020). Robust statistical methods in R using the WRS2 package. *Behavior Research Methods 52,* 464–488. https://doi.org/10.3758/s13428-019-01246-w